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Abstract. We give several new lattice identities valid in nonmodular lattices
such that a uniquely complemented lattice satisfying any of these identities is
necessarily Boolean. Since some of these identities are consequences of modu-
larity as well, these results generalize the classical result of Birkhoff and von
Neumann that every uniquely complemented modular lattice is Boolean. In
particular, every uniquely complemented lattice in M ∨ V(N5), the least non-
modular variety, is Boolean.

1. Introduction

In 1904 Huntington [4] conjectured that every uniquely complemented lattice
must be distributive (and hence a Boolean algebra). In 1945, R. P. Dilworth shat-
tered this conjecture by proving [2] that every lattice can be embedded in a uniquely
complemented lattice. For a much powerful version of the same results, see Adams
and Sichler [1].

In spite of these deep results, it is still hard to find “nice” examples of uniquely
complemented lattices that are not Boolean. The reason is that uniquely comple-
mented lattices having a little extra structure most often turn out to be distributive.
This seems to be the essence of Huntington’s conjecture. For example, we have the
theorem of Garrett Birkhoff and von Neumann that every uniquely complemented
modular lattice is Boolean. Following [10], we call a lattice property P a Hunt-
ington property if every uniquely complemented P -lattice is distributive. Similarly,
a lattice variety K is said to be a Huntington variety if every uniquely comple-
mented lattice in K is Boolean. In this terminology, the modular lattices are the
largest previously known Huntington variety. A monograph by Salii [13] gives a
comprehensive survey of known Huntington properties. Among these, modularity
is the only known condition that is a lattice identity. In this paper, we give a num-
ber of new nonmodular Huntington varieties, any of which can be construed as a
generalization of the von Neumann-Birkhoff theorem.

The automated theorem provers Otter [6] and Prover9 [8], and the program
Mace4 [7], which searches for finite algebras, were used in this work. Several auto-
mated proofs are given in the appendix. The Web page associated with this paper
[12] contains additional Huntington identities and automated proofs supporting this
work.
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2. A Nonmodular Huntington Variety

Here we give a lattice identity that defines a nonmodular Huntington variety.
Several others are given in the following sections and in the supporting Web page
[12].

Theorem 1. The variety of lattices defined by

(H69) (x ∧ (y ∨ (x ∧ z))) ∨ (x ∧ (z ∨ (x ∧ y))) = x ∧ (z ∨ y)

is a nonmodular Huntington variety.

Proof. We show that the condition a∧ b′ = 0 forces the inequality a ≤ b and hence
by a well-known theorem of O. Frink [11], the lattice will necessarily be Boolean.
Indeed, let a∧b′ = 0 for some two elements a, b in a uniquely complemented lattice
satisfying the identity

(x ∧ (y ∨ (x ∧ z))) ∨ (x ∧ (z ∨ (x ∧ y))) = x ∧ (z ∨ y).

Put z = x′ in the above to get

(x ∧ y) ∨ (x ∧ (x′ ∨ (x ∧ y))) = x ∧ (x′ ∨ y).

Now let x = b′, y = a. We have

(b′ ∧ a) ∨ (b′ ∧ (b ∨ (b′ ∧ a))) = b′ ∧ (b ∨ a).

If we assume that a ∧ b′ = 0, then we get b′ ∧ (b ∨ a) = 0. Also, b′ ∨ (b ∨ a) =
(b′∨b)∨a = 1∨a = 1. Thus both b and b∨a are complements of the element b′. Since
the lattice is uniquely complemented, we get the desired conclusion b ∨ a = b. In
other words, we have proved that the given lattice satisfies the bi-implication a ≤ b
if and only if a ∧ b′ = 0. Hence, by Frink’s theorem, the lattice is distributive. !

3. Huntington Implications

Here we show Huntington properties that are implications. These can be used,
among other purposes, to show that lattice identities are Huntington.

Theorem 2. (See [10].) A uniquely complemented lattice satisfying any one of the
following three implications (or their duals) is distributive.

x ∨ y = x ∨ z ⇒ x ∨ y = x ∨ (y ∧ z)(SD-∨)

x ∨ y = x ∨ z ⇒ (x ∧ y) ∨ (x ∧ z) = x ∧ (y ∨ z)(CD-∨)

x ∨ y = x ∨ z ⇒ x ∧ ((x ∧ y) ∨ z) = (x ∧ y) ∨ (x ∧ z)(CM-∨)

A proof of (CD-∨) is given in the appendix. Proofs of the other two cases are
given on the supporting Web page [12].

Corollary 1. A uniquely complemented lattice satisfying the identity

(H82) x ∧ ((y ∧ (x ∨ z)) ∨ (z ∧ (x ∨ y))) = (x ∧ y) ∨ (x ∧ z)

is Huntington.

Proof. It is easy to see that (H82) implies the lattice implication (CD-∨). Indeed,
if

x ∨ y = x ∨ z,
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then

(x ∧ y) ∨ (x ∧ z) = x ∧ ((y ∧ (x ∨ z)) ∨ (z ∧ (xvy))) by (H82)

= x ∧ ((y ∧ (x ∨ y)) ∨ (z ∧ (x ∨ z))) by hypothesis

= x ∧ (y ∨ z)

!

As the reader can see, the identity (H82) is designed to show that there are
lattice identities that formally imply such implications. Using powerful concepts
like the bounded homomorphisms of Ralph McKenzie, one could show that there are
many lattice identities like (H82) that formally imply (SD-∨), (SD-∧), (CD-∨), and
so on. In fact, every finite lattice satisfying (SD-∨) or (SD-∧) will satisfy a lattice
identity that formally implies the respective implication, and all these identities are
examples of nonmodular Huntington identities (for more details, please see [10]).

Table 1 lists several Huntington identities justified by the preceding Huntington
implications. Proofs can be found on the supporting Web page [12]. None of the
identities are equivalent (given lattice theory).

Table 1. Huntington Identities Justified by Huntington Implications
Name Identity Justification
H18 (x ∧ y) ∨ (x ∧ z) = x ∧ ((x ∧ y) ∨ ((x ∧ z) ∨ (y ∧ (x ∨ z)))) CM-∨
H50 x ∧ (y ∨ (z ∧ (x ∨ u))) = x ∧ (y ∨ (z ∧ (x ∨ (z ∧ (y ∨ u))))) SD-∨
H51 x ∧ (y ∨ (z ∧ (x ∨ u))) = x ∧ (y ∨ ((x ∧ z) ∨ (z ∧ u))) SD-∨
H64 x ∧ (y ∨ z) = x ∧ (y ∨ (x ∧ (z ∨ (x ∧ (y ∨ (x ∧ z)))))) SD-∧
H68 x ∧ (y ∨ z) = x ∧ (y ∨ (x ∧ (z ∨ (x ∧ y)))) SD-∧
H69 x ∧ (y ∨ z) = (x ∧ (z ∨ (x ∧ y))) ∨ (x ∧ (y ∨ (x ∧ z))) SD-∧
H76 x ∧ (y ∨ (z ∧ (y ∨ u))) = x ∧ (y ∨ (z ∧ (u ∨ (x ∧ y)))) SD-∨, SD-∧
H79 x ∧ (y ∨ (z ∧ (x ∨ u))) = x ∧ ((x ∧ (y ∨ (x ∧ z))) ∨ (z ∧ u)) SD-∨, SD-∧
H80 (x ∧ y) ∨ (x ∧ z) = x ∧ ((x ∧ y) ∨ (z ∧ (x ∨ (y ∧ (x ∨ z))))) CM-∨
H82 (x ∧ y) ∨ (x ∧ z) = x ∧ ((y ∧ (x ∨ z)) ∨ (z ∧ (x ∨ y))) CD-∨, CM-∨

4. More Huntington Identities

This section contains several nonmodular Huntington identities that do not sat-
isfy the Huntington implications (SD-∨), (CD-∨), (CM-∨), or their duals.

Theorem 3. The variety of lattices defined by

(H58) x ∧ (y ∨ z) = x ∧ (y ∨ ((x ∨ y) ∧ (z ∨ (x ∧ y))))

is a nonmodular Huntington variety.

Proof. (The automatic proof from which this proof was derived is given in the
appendix.) We show that any uniquely complemented lattice satisfying (H58) also
satisfies the order reversibility property a ≤ b ⇒ b′ ≤ a′. Assume a ≤ b; therefore
a∧b′ = 0. In (H58), set x = a, y = b′, and z = (a∨b′)′; then simplify the right-hand
side, giving

a ∧ (b′ ∨ (a ∨ b′)′) = 0.

Unique complementation gives b′ ∨ (a ∨ b′)′ = a′, and therefore b′ ≤ a′. Thus the
unary mapping x %→ x′ is order reversible, and it is well known that this forces



4 R. PADMANABHAN, W. MCCUNE, AND R. VEROFF

distributivity of a uniquely complemented lattice (see [13, p. 48, Cor. 1]; for a
computer proof see [12]). !

Along with (H58), additional Huntington identities not satisfying the Huntington
implications are shown in the following list. Automated proofs are given on the
supporting Web page [12].

x ∧ (y ∨ (z ∧ (x ∨ u))) = x ∧ (y ∨ (z ∧ (x ∨ (z ∧ u))))(H1)

x ∧ (y ∨ (x ∧ z)) = x ∧ (y ∨ (z ∧ ((x ∧ (y ∨ z)) ∨ (y ∧ z))))(H2)

x ∧ (y ∨ (x ∧ z)) = x ∧ (y ∨ (z ∧ (y ∨ (x ∧ (z ∨ (x ∧ y))))))(H3)

x ∨ (y ∧ (x ∨ z)) = x ∨ (y ∧ (z ∨ (x ∧ (z ∨ y))))(H55)

x ∧ (y ∨ z) = x ∧ (y ∨ ((x ∨ y) ∧ (z ∨ (x ∧ y))))(H58)

5. Covers of N5

Since we are interested in discovering nonmodular lattice identities that force
distributivity under unique complementation, we naturally look at all the covers
of the variety V(N5). Ralph McKenzie [9] constructed the fifteen lattices L1–L15,
shown in Figure 2, whose varieties are join-irreducible covers of the least nonmod-
ular variety V(N5). It is a deep result in lattice theory that there are exactly 16
covers of V(N5): the fifteen varieties of McKenzie and the trivial V(M3) ∨ V(N5)
(Figure 1). The results in this paper demonstrate that all these sixteen varieties
are, in fact, Huntington varieties. Table 2 lists the lattices from Figures 2 and 1
for which the Huntington identities given in the paper hold. For more information
on these nonmodular lattice laws and other details, see [10].

M 3 N 5

Figure 1. Lattices M3 and N5



LATTICE LAWS FORCING DISTRIBUTIVITY UNDER UNIQUE COMPLEMENTATION 5

L1 L2 L3 L4

L6 L7 L8L5

L11 L12L9 L10

13L L15L14

Figure 2. All Covers of the Least Nonmodular Lattice N5

Table 2. Lattices (L1 – L15, M3, N5) for which the Identities Hold

(H1) 1 2 7 10 11 13 14 15 N5

(H2) 1 4 6 7 8 9 10 11 12 13 14 15 M3 N5

(H3) 1 4 6 7 8 9 10 11 12 13 14 15 M3 N5

(H18) 1 4 6 7 9 10 11 13 15 M3 N5

(H50) 1 6 7 9 10 11 13 14 15 N5

(H51) 1 7 10 11 13 14 15 N5

(H55) 2 5 6 7 8 9 10 12 13 14 15 M3 N5

(H58) 2 5 6 7 8 9 10 12 13 14 15 M3 N5

(H64) 2 6 7 8 9 10 11 12 13 14 15 N5

(H68) 2 6 7 8 9 10 12 13 14 15 N5

(H69) 2 6 7 8 9 10 12 13 14 15 N5

(H76) 6 7 8 9 10 13 14 15 N5

(H79) 7 10 13 14 15 N5

(H80) 1 3 4 6 7 8 9 10 11 13 15 M3 N5

(H82) 1 4 6 7 9 10 11 13 15 N5
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6. Methods of Discovery

Two methods were used to find the Huntington identities presented in this paper.
The first was to automatically generate a great number of candidates and submit
each to an automated theorem-proving program, and the second involved canonical
representation techniques.

The automatically generated candidates were constructed under the following
constraints. Each candidate must (1) be a lattice equation in terms of meet and
join, (2) not necessarily hold for all lattices, (3) hold for all Boolean algebras, and
(4) hold for the least nonmodular lattice N5. Several thousand identities were
generated, and about 80 were proved to be Huntington identities. Some of the
proofs (e.g., H58 of Theorem 3) were easy for the theorem provers, and some were
difficult, requiring some human guidance. The Huntington identities were then
classified according to the nonmodular lattices in which they hold, as in Table 2.
Those that could be proved to be equivalent (mod lattice theory and duality) to
others were removed, and in some cases, if implications (mod lattice theory and
duality) could be proved, the stronger ones were removed. The result is the set
listed in Table 2.

Classical lattice theory is abundant with computational techniques for finding
nonmodular lattice identities. Most of these originate from the seminal paper of
Ralph Mckenzie [9]. For example, he gives equational bases for various covers
of V(N5). These bases alone lead to several nonmodular Huntington laws. For
example, (H69) discussed in the beginning of the paper is simply a weaker three-
variable version of McKenzie’s four-variable identity (η2) [9, p. 7]. Naturally, this
weaker version holds in several covers of N5. Another technique is to start from,
say, the basic distributive law x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) and consider the new
lattice identity f = (x ∧ y) ∨ (x ∧ z), where the lattice term f is obtained from
x ∧ (y ∨ z) by replacing y with y ∧ (x ∨ z) and z with z ∧ (x ∨ y). This transform
may be construed as N5-correction of distributivity. This results in

x ∧ ((y ∧ (x ∨ z)) ∨ (z ∧ (x ∨ y))) = (x ∧ y) ∨ (x ∧ z)

which is precisely our (H82). While this weak form does not imply distributivity, it
does retain some flavor of distributivity: namely, it implies CD-∨ and hence defines
a Huntington variety. Another rich source is that of Jónsson and Rival [5] who gave a
family of lattice laws that imply either SD-∨ or SD-∧. We selected several of those
and experimented with theorem-proving programs to obtain weaker Huntington
laws. Note that all of these identities are, of course, nonmodular because all of
them are, by design, valid in N5.

Appendix

Proof of Theorem 2, Part CD-∨. This proof was produced by the program
Prover9 [8]. The input and output files can be found on the supporting Web page
[12].

Notes on the Prover9 and Otter proofs.

(1) Proofs are by contradiction.
(2) Terms x, y, z, u, v, w are variables, and A, B, C, D are constants.
(3) Implications are written as disjunctions.
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(4) The justification “m → n” means that an instance of clause m is used to re-
place a term in an instance of clause n, and “; i, j, · · · ” means simplification
with i, j, · · · .

13 x ∨ y = y ∨ x [input]
14 x ∧ y = y ∧ x [input]
15 (x ∨ y) ∨ z = x ∨ (y ∨ z) [input]
16 (x ∧ y) ∧ z = x ∧ (y ∧ z) [input]
17 x ∧ (x ∨ y) = x [input]
18 x ∨ (x ∧ y) = x [input]
19 x ∨ x′ = 1 [input]
20 x ∧ x′ = 0 [input]
21 x ∨ y '= 1 | x ∧ y '= 0 | x′ = y [input]
22 A ∧ B = A [input]
23 A′ ∨ B′ '= A′ [input]
24 x ∨ y '= x ∨ z | x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) [input]
26 x ∧ (y ∧ z) = y ∧ (x ∧ z) [14 → 16; 16]
32 x ∨ ((x ∧ y) ∨ z) = x ∨ z [18 → 15]
37 x ∨ (x′ ∨ y) = 1 ∨ y [19 → 15]
39 x ∧ 1 = x [19 → 17]
42 x ∨ 0 = x [20 → 18]
43 A ∧ (B ∧ x) = A ∧ x [22 → 16]
51 x ∨ y '= 1 | x ∧ (y ∨ x′) = 0 ∨ (x ∧ y) [19 → 24; 20 13]
60 1 ∧ x = x [39 → 14]
66 0 ∨ x = x [42 → 13]
69 x ∨ y '= 1 | x ∧ (y ∨ x′) = x ∧ y [51; 66]
72 1 ∨ x = 1 [60 → 17]
73 x ∨ (x′ ∨ y) = 1 [37; 72]
75 0 ∧ x = 0 [66 → 17]
79 x ∧ (y ∧ x′) = y ∧ 0 [20 → 26]
81 x ∨ 1 = 1 [72 → 13]
83 x ∧ 0 = 0 [75 → 14]
84 x ∧ (y ∧ x′) = 0 [79; 83]
103 A ∧ (A′ ∨ B′) '= 0 [21 73 23]
170 x ∨ (x ∧ y)′ = 1 [19 → 32; 81]
185 x ∨ (y ∧ x)′ = 1 [14 → 170]
194 B ∨ A′ = 1 [22 → 185]
891 B ∧ (A′ ∨ B′) = B ∧ A′ [69 194]
5852 A ∧ (A′ ∨ B′) = 0 [891 → 43; 84]
5853 ! [5852 103]

Proof of Theorem 3. This proof was produced by the program Prover9 [8]. The
input and output files can be found on the supporting Web page [12].

29 x ∨ y = y ∨ x [input]
37 x ∨ (y ∧ x) = x [input]
38 x ∨ (x ∨ y) = x ∨ y [input]
40 x ∧ x′ = 0 [input]
47 x ∨ 0 = x [input]
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48 0 ∨ x = x [input]
49 x ∨ y '= 1 | x ∧ y '= 0 | x′ = y [input]
50 x ∧ (x ∨ y)′ = 0 [input]
51 x ∨ (y ∨ (x ∨ y)′) = 1 [input]
52 x ∧ (y ∨ ((x ∨ y) ∧ (z ∨ (x ∧ y)))) = x ∧ (y ∨ z) [input]
53 A ∧ B = A [input]
54 A′ ∨ B′ '= A′ [input]
103 A ∨ B = B [53 → 37; 29]
107 A ∧ B′ = 0 [103 → 50]
109 A ∧ (B′ ∨ ((A ∨ B′) ∧ x)) = A ∧ (B′ ∨ x) [107 → 52; 47]
2392 A ∧ (B′ ∨ (A ∨ B′)′) = 0 [40 → 109; 29 48 107]
2439 B′ ∨ (A ∨ B′)′ = A′ [49 51 2392]
2481 A′ ∨ B′ = A′ [2439 → 38; 29 2439]
2482 ! [2481 54]
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